By Topic

A mining-based category evolution approach to managing online document categories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chih-Ping Wei ; Dept. of Inf. Manage., Nat. Sun Yat-Sen Univ., Kaohsiung, Taiwan ; Yuan-Xin Dong

With rapid expansion of the numbers and sizes of text repositories and improvements in global connectivity, the quantity of information available online as free-format text is growing exponentially. Many large organizations create and maintain huge volumes of textual information online, and there is a pressing need for support of efficient and effective information retrieval, filtering, and management. Text categorization, or the assignment of textual documents to one or more pre-defined categories based on their content, is an essential component of efficient management and retrieval of documents. Previously, research has focused predominantly on developing or adopting statistical classification or inductive learning methods for automatically discovering text categorization patterns for a pre-defined set of categories. However, as documents accumulate, such categories may not capture a document's characteristics correctly. In this study, we propose a mining-based category evolution (MiCE) technique to adjust document categories based on existing categories and their associated documents. Empirical evaluation results indicate that the proposed technique, MiCE, was more effective than the category discovery approach and was insensitive to the quality of original categories.

Published in:

System Sciences, 2001. Proceedings of the 34th Annual Hawaii International Conference on

Date of Conference:

6-6 Jan. 2001