By Topic

Empirical comparison of fast clustering algorithms for large data sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chih-Ping Wei ; Dept. of Inf. Manage., Nat. Sun Yat-Sen Univ., Kaohsiung, Taiwan ; Yen-Hsien Lee ; Che-Ming Hsu

Several fast algorithms for clustering very large data sets have been proposed in the literature. CLARA is a combination of a sampling procedure and the classical PAM algorithm, while CLARANS adopts a serial randomized search strategy to find the optimal set of medoids. GAC-R3 and GAC-RARw exploit genetic search heuristics for solving clustering problems. In this research, we conducted an empirical comparison of these four clustering algorithms over a wide range of data characteristics. According to the experimental results, CLARANS outperforms its counterparts both in clustering quality and execution time when the number of clusters increases, clusters are more closely related, more asymmetric clusters are present, or more random objects exist in the data set. With a specific number of clusters, CLARA can efficiently achieve satisfactory clustering quality when the data size is larger, whereas GAC-R3 and GAC-RARw can achieve satisfactory clustering quality and efficiency when the data size is small, the number of clusters is small, and clusters are more distinct or symmetric.

Published in:

System Sciences, 2000. Proceedings of the 33rd Annual Hawaii International Conference on

Date of Conference:

4-7 Jan. 2000