By Topic

A software system for spatial data analysis and modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lazarevic, A. ; Dept. of Electr. Eng. & Comput. Sci., Washington State Univ., Pullman, WA, USA ; Fiez, T. ; Obradovic, Z.

Advances in geographical information systems (GIS) and supporting data collection technology has resulted in the rapid collection of a huge amount of spatial data. However, known data mining techniques are unable to fully extract knowledge from high dimensional data in large spatial databases, while data analysis in typical knowledge discovery software is limited to non-spatial data. Therefore, the aim of the software system for spatial data analysis and modeling (SDAM) presented in this article was to provide flexible machine learning tools for supporting an interactive knowledge discovery process in large centralized or distributed spatial databases. SDAM offers an integrated tool for rapid software development for data analysis professionals as well as systematic experimentation by spatial domain experts without prior training in machine learning or statistics. When the data are physically dispersed over multiple geographic locations, the SDAM system allows data analysis and modeling operations to be conducted at distributed sites by exchanging control and knowledge rather than raw data through slow network connections.

Published in:

System Sciences, 2000. Proceedings of the 33rd Annual Hawaii International Conference on

Date of Conference:

4-7 Jan. 2000