By Topic

Mining generalized query patterns from web logs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
C. X. Ling ; Dept. of Comput. Sci., Univ. of Western Ontario, London, Ont., Canada ; Jianfeng Gao ; Huajie Zhang ; Weining Qian
more authors

User logs of a popular search engine keep track of user activities including user queries, user click-through from the returned list, and user browsing behaviors. Knowledge about user queries discovered from user logs can improve the performance of the search engine. We propose a data-mining approach that produces generalized query patterns or templates from the raw user logs of a popular commercial knowledge-based search engine that is currently in use. Our simulation shows that such templates can improve search engine's speed and precision, and can cover queries not asked previously. The templates are also comprehensible so web editors can easily discover topics in which most users are interested.

Published in:

System Sciences, 2001. Proceedings of the 34th Annual Hawaii International Conference on

Date of Conference:

6-6 Jan. 2001