Cart (Loading....) | Create Account
Close category search window
 

Architectural support for efficient multicasting in irregular networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rajeev Sivaram ; Enterprise Syst. Group, IBM Corp., Poughkeepsie, NY, USA ; Kesavan, R. ; Panda, D.K. ; Stunkel, C.B.

Parallel computing on networks of workstations is fast becoming a cost-effective high-performance computing alternative to MPPs. Such a computing environment typically consists of processing nodes interconnected through a switch-based irregular network. Many of the problems that were solved for regular networks have to be solved anew for these systems. One such problem is that of efficient multicast communication. In this paper, we propose two broad categories of schemes for efficient multicasting in such irregular networks: network interface-based (NI-based) and switch-based. The NI-based multicasting schemes use the network interface of intermediate destinations for absorbing and retransmitting messages to other destinations in the multicast tree. In contrast, the switch-based multicasting schemes use hardware support for packet replication at the switches of the network and a concept known as multidestination routing to convey a multicast message from one source to multiple destinations. We first present alternative schemes for efficient multipacket forwarding at the NI and derive an optimal k-binomial multicast tree for multipacket NI-based multicast. We then propose two switch-based multicasting schemes that differ in the power of the encoding scheme and the complexity of the decoding logic at the switches. These multicasting schemes use path-based multidestination worms that can cover all nodes connected to switches along a valid unicast path and tree-based multidestination worms that can cover entire destination sets in a single phase using one worm, respectively. For each scheme, we describe the associated header encoding and decoding operation, the method for deriving multidestination worms that cover arbitrary multicast destination sets, and the multicasting scheme using the derived multidestination worms

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:12 ,  Issue: 5 )

Date of Publication:

May 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.