By Topic

Control strategies for enhanced power smoothing in wind energy systems using a flywheel driven by a vector-controlled induction machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
R. Cardenas ; Electr. Eng. Dept., Univ. of Magallanes, Punta Arenas, Chile ; R. Pena ; G. Asher ; J. Clare

This paper presents a novel control strategy for power smoothing in wind energy applications, especially those feeding a stand-alone load. The system is based on a vector-controlled induction machine driving a flywheel and addresses the problem of regulating the DC-link system voltage against both input power surges/sags from a wind turbine or sudden changes in load demand. The control is based on a feedforward compensation scheme augmented by a nonlinear controller. Two feedforward compensation schemes are discussed and the limitations and performance of each scheme are analyzed. Experimental results are presented which verify the excellent performance of the feedforward compensation technique

Published in:

IEEE Transactions on Industrial Electronics  (Volume:48 ,  Issue: 3 )