By Topic

Speed-sensorless vector control of an induction motor using neural network speed estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Seong-Hwan Kim ; Sch. of Electr. & Control Instrum. Eng., Mokpo Nat. Univ., Chonnam, South Korea ; Tae-Sik Park ; Ji-Yoon Yoo ; Gwi-Tae Park

In this paper, a novel speed estimation method of an induction motor using neural networks (NNs) is presented. The NN speed estimator is trained online by using the error backpropagation algorithm, and the training starts simultaneously with the induction motor working. The estimated speed is then fed back in the speed control loop, and the speed-sensorless vector drive is realized. The proposed NN speed estimator has shown good performance in the transient and steady states, and also at either variable-speed operation or load variation. The validity and the usefulness of the proposed algorithm are thoroughly verified with experiments on fully digitalized 2.2 kW induction motor drive systems

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:48 ,  Issue: 3 )