By Topic

Eigenpaxels and a neural-network approach to image classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
P. McGuire ; C-Core, St. John's, Nfld., Canada ; G. M. T. D'Eleuterio

A expansion encoding approach to image classification is presented. Localized principal components or “eigenpaxels” are used as a set of basis functions to represent images. That is, principal-component analysis is applied locally rather than on the entire image. The “eigenpaxels” are statistically determined using a database of the images of interest. Classification based on visual similarity is achieved through the use of a single-layer error-correcting neural network. Expansion encoding and the technique of subsampling are key elements in the processing stages of the eigenpaxel algorithm. Tested using a database of frontal face images consisting of 40 individuals, the algorithm exhibits equivalent performance to other comparable but more cumbersome methods. In addition, the technique is shown to be robust to various types of image noise

Published in:

IEEE Transactions on Neural Networks  (Volume:12 ,  Issue: 3 )