By Topic

Distributed-information neural control: the case of dynamic routing in traffic networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Baglietto, M. ; Dept. of Commun., Comput. & Syst. Sci., Genoa Univ., Italy ; Parisini, T. ; Zoppoli, R.

Large-scale traffic networks can be modeled as graphs in which a set of nodes are connected through a set of links that cannot be loaded above their traffic capacities. Traffic flows may vary over time. Then the nodes may be requested to modify the traffic flows to be sent to their neighboring nodes. In this case, a dynamic routing problem arises. The decision makers are realistically assumed 1) to generate their routing decisions on the basis of local information and possibly of some data received from other nodes, typically, the neighboring ones and 2) to cooperate on the accomplishment of a common goal, that is, the minimization of the total traffic cost. Therefore, they can be regarded as the cooperating members of informationally distributed organizations, which, in control engineering and economics, are called team organizations. Team optimal control problems cannot be solved analytically unless special assumptions on the team model are verified. In general, this is not the case with traffic networks. An approximate resolutive method is then proposed, in which each decision maker is assigned a fixed-structure routing function where some parameters have to be optimized. Among the various possible fixed-structure functions, feedforward neural networks have been chosen for their powerful approximation capabilities. The routing functions can also be computed (or adapted) locally at each node. Concerning traffic networks, we focus attention on store-and-forward packet switching networks, which exhibit the essential peculiarities and difficulties of other traffic networks. Simulations performed on complex communication networks point out the effectiveness of the proposed method

Published in:

Neural Networks, IEEE Transactions on  (Volume:12 ,  Issue: 3 )