By Topic

A current controlled variable delay superconducting transmission line

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. M. Anlage ; Dept. of Appl. Phys., Stanford Univ., CA, USA ; H. J. Snortland ; M. R. Beasley

The authors present a device concept for a superconductive current-biased variable-delay transmission line structure which is capable, in principle, of operating up to the terahertz regime. The device makes use of the change in kinetic inductance of superconductors with transport current. The relevant material figures of merit for optimum performance of such a device are defined, and suitable candidate materials are identified. The device concept has been tested in niobium technology, where temperature-dependent changes in the inductance are easily achieved. Preliminary measurements on the temperature and current dependence of niobium transmission line resonators operating in the 1-20 GHz range are presented. The expected DC bias current variable delay has not yet been observed, but niobium is not expected to be the optimum material for such an effect. Suggested improvements include the use of more favorable materials, such as amorphous alloys and oxide superconducting films, and the use of modified microstrip geometries where a closer approach to the depairing critical current density should be possible

Published in:

IEEE Transactions on Magnetics  (Volume:25 ,  Issue: 2 )