Cart (Loading....) | Create Account
Close category search window
 

Contextual clustering for analysis of functional MRI data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Salli, E. ; Lab. of Biomed. Eng., Helsinki Univ. of Technol., Espoo, Finland ; Aronen, Hannu J. ; Savolainen, S. ; Korvenoja, A.
more authors

Presents a contextual clustering procedure for statistical parametric maps (SPM) calculated from time varying three-dimensional images. The algorithm can be used for the detection of neural activations from functional magnetic resonance images (fMRI). An important characteristic of SPM is that the intensity distribution of background (nonactive area) is known whereas the distributions of activation areas are not. The developed contextual clustering algorithm divides an SPM into background and activation areas so that the probability of detecting false activations by chance is controlled, i.e., hypothesis testing is performed. Unlike the much used voxel-by-voxel testing, neighborhood information is utilized, an important difference. This is achieved by using a Markov random field prior and iterated conditional modes (ICM) algorithm. However, unlike in the conventional use of ICM algorithm, the classification is based only on the distribution of background. The results from the authors' simulations and human fMRI experiments using visual stimulation demonstrate that a better sensitivity is achieved with a given specificity in comparison to the voxel-by-voxel thresholding technique. The algorithm is computationally efficient and can be used to detect and delineate objects from a noisy background in other applications.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:20 ,  Issue: 5 )

Date of Publication:

May 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.