By Topic

Hole trapping and trap generation in the gate silicon dioxide

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhang, J.F. ; Sch. of Eng., Liverpool John Moore Univ., UK ; Sii, H.K. ; Groeseneken, G. ; Degraeve, R.

Oxide breakdown has been proposed to be a limiting factor for future generation CMOS. The breakdown is caused by defect generation in the oxide. Although electron trap generation has received much attention, there is little information available on the hole trap generation. The relatively high potential barrier for holes at the oxide/Si interface makes it difficult to achieve a high level of hole injection. Most previous work was limited to an injection level Qinj of 1014 cm-2. In this paper, we investigate the hole trapping and trap generation when Qinj reaches the order of 1018 cm-2. When Qinj <1015 cm-2, the trapping is dominated by the as-grown traps. As Qinj increases further, however, it is found that the generation of new traps controls the trapping. The trap generation does not saturate up to the oxide breakdown. The trapping kinetics for both the as-grown and the generated traps is studied. The relationship between the density of generated traps and the Qinj is explored. Attention is paid to how the trapping and trap generation depends on the distance from the interface. In contrast to the uniform generation of electron traps across the oxide, we found that the hole trap generation was not uniform and it moved away from the interface as Qinj increased

Published in:

Electron Devices, IEEE Transactions on  (Volume:48 ,  Issue: 6 )