Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

A high gain n-well/gate tied PMOSFET image sensor fabricated from a standard CMOS process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
WeiQuan Zhang ; Dept. of Electr. & Electron. Eng., Hong Kong Univ. of Sci. & Technol., Kowloon, Hong Kong ; Chan, M.

The performance of a high gain photodetector fabricated using a standard 0.8-μm, triple metal, n-well CMOS process is reported, The photodetector is formed by connecting the gate of the PMOSFET and n-well together while keeping both floating. The depletion region induced by the floating gate and the well-to-substrate p-n junction separate the optically generated electron-hole pairs in the direction perpendicular to the current flow. The n-well potential modulated by illumination is fed back to the gate through the well-to-gate connection, which results in an extra current amplification beyond that of a normal PMOSFET biased in the lateral bipolar mode. A high responsivity of 2.5×103 A/W has been measured with an operating voltage as low as 0.3 V for a W/L of 8.2 μm/0.8 μm. The impact of technology scaling on the performance of the photodetector are also studied. A simple 32×32-pixel image sensor array was fabricated to demonstrate the feasibility of integrating the new device in actual circuit applications

Published in:

Electron Devices, IEEE Transactions on  (Volume:48 ,  Issue: 6 )