By Topic

Processing techniques for refractory integrated circuits [superconducting]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Przybysz, J.X. ; Westinghouse Res. & Dev. Center, Pittsburgh, PA, USA ; Blaugher, R.D. ; Buttyan, J.

Processing techniques have been developed to increase yields and uniformity in superconductor integrated circuits fabricated with refractory materials. An eight-level process was used to define a ground plane, ground plane insulator, Josephson junction base and counterelectrodes, a second insulator layer, superconductor interconnections, resistors, and gold contact pads. Every layer, except the gold, was patterned by reactive ion etching (RIE). A resistor structure was developed that included an etch stop layer. The formation of polymers, which occurs with etch gases containing carbon, was inhibited by the addition of oxygen to the plasma. RIE of insulator vias was accomplished with a mixture of NF3 and Ar that gave good selectivity for silicon dioxide over niobium. Stress-free films of niobium, molybdenum, and silicon dioxide were obtained by adjusting the sputtering gas pressure. Molybdenum resistors, deposited as a top layer, were trimmed by RIE as a post-testing step to improve circuit performance

Published in:

Magnetics, IEEE Transactions on  (Volume:25 ,  Issue: 2 )