By Topic

A 7.1-GB/s low-power rendering engine in 2-D array-embedded memory logic CMOS for portable multimedia system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yong-Ha Park ; Dept. of Electr. Eng., Korea Adv. Inst. of Sci. & Technol., Taejon, South Korea ; Seon-Ho Han ; Jung-Hwan Lee ; Hoi-Jun Yoo

A single-chip rendering engine that consists of a DRAM frame buffer, a SRAM serial access memory, pixel/edge processor array and 32-b RISC core is proposed for low-power three-dimensional (3-D) graphics in portable systems. The main features are two-dimensional (2-D) hierarchical octet tree (HOT) array structure with bandwidth amplification, three dedicated network schemes, virtual page mapping, memory-coupled logic pipeline, low-power operation, 7.1-GB/s memory bandwidth, and 11.1-Mpolygon/s drawing speed. The 56-mm2 prototype die integrating one edge processor, eight pixel processors, eight frame buffers, and a RISC core are fabricated using 0.35-μm CMOS embedded memory logic (EML) technology with four poly layers and three metal layers. The fabricated test chip, 590 mW at 100 MHz 3.3 V operation, is demonstrated with a host PC through a PCI bridge

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:36 ,  Issue: 6 )