By Topic

Matching-based algorithm for FPGA channel segmentation design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yao-Wen Chang ; Inst. of Comput. & Inf. Sci., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Jai-Ming Lin ; Wong, M.D.F.

Process technology advances have made multimillion gate field programmable gate arrays (FPGAs) a reality. A key issue that needs to be solved in order for the large-scale FPGAs to realize their full potential lies in the design of their segmentation architectures. Channel segmentation designs have been studied to some degree in much of the literature; the previous methods are based on experimental studies, stochastic models, or analytical analysis. In this paper, we address a new direction for studying segmentation architectures. Our method is based on graph-theoretic formulation. We first formulate a problem of finding the optimal segmentation architecture for two input routing instances and present a polynomial-time optimal algorithm to solve the problem. Based on the solution to the problem, we develop an effective and efficient multi-level matching-based algorithm for general channel segmentation designs. Experimental results show that our method significantly outperforms the previous work. For example, our method achieves average improvements of 18.2% and 8.9% in routability in comparison with other work

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:20 ,  Issue: 6 )