By Topic

Finite element analysis of internal winding faults in distribution transformers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wang, H. ; Power Syst. Autom. Lab., Texas A&M Univ., College Station, TX, USA ; Butler, K.L.

With the appearance of deregulation, distribution transformer predictive maintenance is becoming more important for utilities to prevent forced outages with the consequential costs. To detect and diagnose a transformer internal fault requires a transformer model to simulate these faults. This paper presents finite element analysis of internal winding faults in a distribution transformer. The transformer with a turn-to-earth fault or a turn-to-turn fault is modeled using coupled electromagnetic and structural finite elements. The terminal behaviors of the transformer are studied by an indirect coupling of the finite element method and circuit simulation. The procedure was realized using a commercially available software. The normal case and various faulty cases were simulated and the terminal behaviors of the transformer were studied and compared with field experimental results. The comparison results validate the finite element model to simulate internal faults in a distribution transformer.

Published in:

Power Delivery, IEEE Transactions on  (Volume:16 ,  Issue: 3 )