By Topic

Condition assessment of power transformer on-load tap-changers using wavelet analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pengju Kang ; Res. Concentration in Electr. Energy, Queensland Univ. of Technol., Brisbane, Qld., Australia ; D. Birtwhistle

The operation of a power transformer on-load tap-changer (OLTC) produces a well-defined series of vibration bursts as its signature. Due to the harmonic and nonstationary nature of the transient vibration signal, traditional frequency and time-frequency techniques are on longer effective for characterization of this type of vibration signals, as the localized time domain features, such as delays between bursts, the number of bursts, and the strengths of bursts, are essential for the condition assessment of OLTC. A wavelet transform based technique is developed in this paper to characterize the OLTC vibration signals. This technique gives a simplified format for displaying and representing the essential features of the OLTC vibration signatures. Application results from a selector type OLTC demonstrate that the features extracted in the wavelet domain can be utilized to provide reliable indications of the actual heath of an OLTC

Published in:

IEEE Transactions on Power Delivery  (Volume:16 ,  Issue: 3 )