By Topic

A Monte Carlo study of the rough-sea-surface influence on the radar scattering from two-dimensional ships

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Burkholder, R.J. ; Dept. of Electr. Eng., Ohio State Univ., Columbus, OH, USA ; Pino, M.R. ; Obelleiro, F.

The generalized forward-backward (GFB) method was introduced in Pino et al. (1999) for computing the electromagnetic scattering from two-dimensional targets on a rough surface. The GFB method is used in this article to generate numerical data for a Monte Carlo simulation of the horizontally polarized radar cross section (RCS) of two-dimensional ship-like targets on random rough sea surfaces. The RCS is computed as a function of the incidence angle and wind speed for a large number of surface realizations. It is found that the mean RCS of a given target on a rough surface is generally lower than or equal to the RCS of the same target on a flat surface, while the maximum RCS is usually greater than or equal to the flat-surface case. It is also observed that the variations in the RCS introduced by the rough surface become less significant as the elevation angle approaches grazing

Published in:

Antennas and Propagation Magazine, IEEE  (Volume:43 ,  Issue: 2 )