Cart (Loading....) | Create Account
Close category search window
 

Flash analog-to-digital converter using resonant-tunneling multiple-valued circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Waho, T. ; Dept. of Electr. & Electron. Eng., Sophia Univ., Tokyo, Japan ; Hattori, K. ; Takamatsu, Y.

We have proposed a flash analog-to-digital converter (ADC) that uses resonant-tunneling complex gates not only as ternary quantizers but also as ternary-to-binary encoder circuits. The ternary quantizers, consisting of monostable-to-multistable transition logic (MML) circuits, convert the analog input signal into the ternary thermometer code. This code is then converted into the binary Gray-code output by a multiple-valued, multiple-input monostable-to-bistable transition logic element (M2-MOBILE). By assuming InP-based resonant-tunneling diodes and heterojunction field-effect transistors, we have carried out SPICE simulation that demonstrates ultrahigh-speed ADC operation at a clock frequency of 5 GHz. Compact circuit configuration, which is due to the combination of MML and M2-MOBILE, reduces the device count and power dissipation by a factor of two compared with previous RTD-based ADCs

Published in:

Multiple-Valued Logic, 2001. Proceedings. 31st IEEE International Symposium on

Date of Conference:

2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.