By Topic

Design of synchronous and asynchronous variable-latency pipelined multipliers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
M. Olivieri ; Dept. of Electron. Eng., Rome Univ., Italy

This paper presents a novel variable-latency multiplier architecture, suitable for implementation as a self-timed multiplier core or as a fully synchronous multicycle multiplier core. The architecture combines a second-order Booth algorithm with a split carry save array pipelined organization, incorporating multiple row skipping and completion-predicting carry-select dual adder. The paper reports the architecture and logic design, CMOS circuit design and performance evaluation. In 0.35 /spl mu/m CMOS, the expected sustainable cycle time for a 32-bit synchronous implementation is 2.25 ns. Instruction level simulations estimate 54% single-cycle and 46% two-cycle operations in SPEC95 execution. Using the same CMOS process, the 32-bit asynchronous implementation is expected to reach an average 1.76 ns throughput and 3.48 ns latency in SPEC95 execution.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:9 ,  Issue: 2 )