By Topic

Memory optimization of MAP turbo decoder algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
C. Schurgers ; Interuniversitair Microelectron. Center, Leuven, Belgium ; F. Catthoor ; M. Engels

Turbo codes are the most recent breakthrough in coding theory. However, the decoder's implementation cost limits their incorporation in commercial systems. Although the decoding algorithm is highly data dominated, no true memory optimization study has been performed yet. We have extensively and systematically investigated different memory optimizations for the maximum a posteriori (MAP) class of decoding algorithms. It turns out that it is not possible to present one decoder structure as being optimal. In fact, there are several tradeoffs, which depend on the specific turbo code, the implementation target (hardware or software), and the selected cost function. We therefore end up with a parametric family of new optimized algorithms out of which the designer can choose. The impact of our optimizations is illustrated by a representative example, which shows a significant decrease in both decoding energy (factor 2.5) and delay (factor 1.7).

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:9 ,  Issue: 2 )