Cart (Loading....) | Create Account
Close category search window
 

FPGA prototyping of a RISC processor core for embedded applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gschwind, M. ; IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA ; Salapura, V. ; Maurer, D.

Application-specific processors offer an attractive option in the design of embedded systems by providing high performance for a specific application domain. In this work, we describe the use of a reconfigurable processor core based on an RISC architecture as starting point for application-specific processor design. By using a common base instruction set, development cost can be reduced and design space exploration is focused on the application-specific aspects of performance. An important aspect of deploying any new architecture is verification which usually requires lengthy software simulation of a design model. We show how hardware emulation based on programmable logic can be integrated into the hardware/software codesign flow. While previously hardware emulation required massive investment in design effort and special purpose emulators, an emulation approach based on high-density field-programmable gate array (FPGA) devices now makes hardware emulation practical and cost effective for embedded processor designs. To reduce development cost and avoid duplication of design effort, FPGA prototypes and ASIC implementations are derived from a common source: We show how to perform targeted optimizations to fully exploit the capabilities of the target technology while maintaining a common source base.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:9 ,  Issue: 2 )

Date of Publication:

April 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.