By Topic

Long-period acoustic and seismic measurements and ocean floor currents

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Webb, S.C. ; Scripps Inst. of Oceanogr., California Univ., San Diego, CA, USA

Pressure fluctuations caused by a strong ocean floor current are evident during most of an eighty-day-long record of very-low-frequency acoustic ambient noise measured by an instrument on the seafloor in the western Atlantic in the framework of the HEBBLE (High Energy Benthic Boundary Layer Experiment). The differential pressure gauges on the instrument produce useful measurements over a wide frequency band extending from 0.0005 to 16 Hz. The spectrum of current-induced pressure fluctuations is red with a power-law dependence on frequency with an exponent of -1.5. Turbulence in the ocean floor boundary layer is the source of these pressure fluctuations rather than the effects of flow around the transducers. This record of boundary-layer pressure fluctuations is used to predict the effect of seafloor currents on long-period seismograph measurements from the seafloor and from under the seafloor in boreholes

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:13 ,  Issue: 4 )