By Topic

Compensation of frequency-selective I/Q imbalances in wideband receivers: models and algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Valkama, M. ; Telecommun. Lab., Tampere Univ. of Technol., Finland ; Renfors, M. ; Koivunen, V.

To achieve satisfactory performance in analog I/Q (inphase/quadrature) processing-based wireless receivers, the matching of amplitudes and phases of the I and Q branches becomes vital. In practice, there is always some imbalance and the image attenuation produced by the analog processing remains finite. Especially in wideband receivers, where the existence of strong image band signals makes the attenuation requirements extremely stringent, analog processing is incapable of providing adequate image rejection. We derive a general frequency-dependent signal model for an imbalanced analog front-end and present two alternative methods utilizing digital processing to enhance the analog front-end image rejection. Based on the obtained results, the proposed methods provide adequate image signal rejection with very few assumptions, even in the difficult cases of frequency-selective and/or time-varying imbalances

Published in:

Wireless Communications, 2001. (SPAWC '01). 2001 IEEE Third Workshop on Signal Processing Advances in

Date of Conference:

2001