By Topic

Improved coil design for functional magnetic stimulation of expiratory muscles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hsiao, I.N. ; Functional Magnetic Stimulation Lab., Health Care Group, Long Beach, CA, USA ; Weh-Hau Lin, V.

The authors' studies have demonstrated effective stimulation of the expiratory muscles in patients with spinal cord injury (SCI) using functional magnetic stimulation (FMS). The observed contraction of the expiratory muscles and functional improvement of the pulmonary functions make functional magnetic stimulation an appropriate tool for expiratory muscle training. To fully capitalize on the benefits of FMS for expiratory muscle training, this study aimed to optimize the magnetic coils (MCs). The primary goal of this study was to investigate how two parameters of the MC size and winding structure, would affect expiratory muscle training. By varying these parameters, the authors' approach was to conceptualize and evaluate the induced electric field and nerve activation function distributions of six coils, round 9.2, 13.7, and 20 cm, and spiral 9.2-, 13.7-, and 20-cm coils in the computer modeling phase. Round 9.2 cm, spiral 13.7 cm, and spiral 20-cm coils were also evaluated in experimental studies for induced electrical field and in clinical studies of expiratory muscles. Both the computer models and experimental measurements indicated that the spiral 20-cm coil can not only stimulate more expiratory spinal nerves but can also stimulate them more evenly. In addition, coils with larger diameters had better penetration than those with smaller diameters. The clinical results showed that the spiral 20-cm coil produced higher expiratory pressure, flow and volume in five able-bodied subjects, and it was the coil of choice among the subjects when asked their preferences. In the authors' attempt to optimize MC design for FMS of expiratory muscle training, they followed the designing guidelines set out in their previous study and arrived at a more effective tool.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:48 ,  Issue: 6 )