By Topic

Estimating the posterior probability of LTP failure by sequential Bayesian analysis of an imperfect Bernoulli trial model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
W. B. Bishop ; Lockheed Martin Electron. & Surveillance Syst., Manijus, NY, USA

A tetanically stimulated (TS) neuron is said to have failed to fire if its voltage-clamped excitatory postsynaptic current (EPSC) measurement is devoid of a long-term potentiation (LTP) response. This paper provides a method for evaluating the posterior probability of "failure" for TS neurons. A sequential Bayes algorithm is employed on an imperfect Bernoulli trial model to refine the posterior with each EPSC data record processed. The method is applied to both real and simulated LTP data and is shown to be consistent with the theoretical Beta-distributed posterior and the reported in vitro voltage-damped EPSC failure rates.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:48 ,  Issue: 6 )