Cart (Loading....) | Create Account
Close category search window
 

Measuring time-frequency information content using the Renyi entropies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Baraniuk, R.G. ; Dept. of Electr. & Comput. Eng., Rice Univ., Houston, TX, USA ; Flandrin, P. ; Janssen, A.J.E.M. ; Michel, O.J.J.

The generalized entropies of Renyi inspire new measures for estimating signal information and complexity in the time-frequency plane. When applied to a time-frequency representation (TFR) from Cohen's class or the affine class, the Renyi entropies conform closely to the notion of complexity that we use when visually inspecting time-frequency images. These measures possess several additional interesting and useful properties, such as accounting and cross-component and transformation invariances, that make them natural for time-frequency analysis. This paper comprises a detailed study of the properties and several potential applications of the Renyi entropies, with emphasis on the mathematical foundations for quadratic TFRs. In particular, for the Wigner distribution, we establish that there exist signals for which the measures are not well defined

Published in:

Information Theory, IEEE Transactions on  (Volume:47 ,  Issue: 4 )

Date of Publication:

May 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.