By Topic

Molecular dynamics simulations of plasma crystal formation including wake effects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hammerberg, J.E. ; Los Alamos Nat. Lab., NM, USA ; Lemons, D.S. ; Murillo, M.S. ; Winske, D.

Molecular dynamics (MD) simulations are used to study dusty plasma crystal formation in three dimensions. The grain interaction model includes a spherically symmetric Debye-Huckel potential, an asymmetric wake potential, and a unidirectional external potential representing gravity and the sheath potential. We use a new form for the wake with ion-neutral collisions that reduce the interaction length of the wake. For the parameters considered, we obtain quasi-ordered structures in which the grains align into well-formed strings in the vertical direction and a more amorphous alignment of the strings themselves. Changes in the vertical alignment as a function of the wake parameters are analyzed

Published in:

Plasma Science, IEEE Transactions on  (Volume:29 ,  Issue: 2 )