By Topic

Two fast architectures for the direct 2-D discrete wavelet transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Marino, F. ; Dipartimento di Elettrotecnica ed Elettronica, Bari Univ., Italy

We propose two architectures for the direct two-dimensional (2-D) discrete wavelet transform (DWT). The first one is based on a modified recursive pyramid algorithm (MRPA) and performs a “"nonstandard” decomposition (i.e., Mallat's (1989) tree) of an N×N image in approximately 2N2/3 clock cycles (ccs). This result consistently speeds up other known architectures that commonly need approximately N2 ccs. Furthermore, the proposed architecture is simpler than others in terms of hardware complexity. Subsequently, we show how “symmetric”/“anti-symmetric” properties of linear-phase wavelet filter bases can be exploited in order to further reduce the VLSI area. This is used to design a second architecture that provides one processing unit for each level of decomposition (pipelined approach) and performs a decomposition in approximately N2/2 ccs. In many practical cases, even this architecture is simpler than general MRPA-based devices (having only one processing unit)

Published in:

Signal Processing, IEEE Transactions on  (Volume:49 ,  Issue: 6 )