By Topic

Iterative algorithms for state estimation of jump Markov linear systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Doucet, Arnaud ; Dept. of Eng., Cambridge Univ., UK ; Andrieu, C.

Jump Markov linear systems (JMLSs) are linear systems whose parameters evolve with time according to a finite state Markov chain. Given a set of observations, our aim is to estimate the states of the finite state Markov chain and the continuous (in space) states of the linear system. In this paper, we present original deterministic and stochastic iterative algorithms for optimal state estimation of JMLSs. The first stochastic algorithm yields minimum mean square error (MMSE) estimates of the finite state space Markov chain and of the continuous state of the JMLS. A deterministic and a stochastic algorithm are given to obtain the marginal maximum a posteriori (MMAP) sequence estimate of the finite state Markov chain. Finally, a deterministic and a stochastic algorithm are derived to obtain the MMAP sequence estimate of the continuous state of the JMLS. Computer simulations are carried out to evaluate the performance of the proposed algorithms. The problem of deconvolution of Bernoulli-Gaussian (BG) processes and the problem of tracking a maneuvering target are addressed

Published in:

Signal Processing, IEEE Transactions on  (Volume:49 ,  Issue: 6 )