By Topic

Model-based temporal object verification using video

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Baoxin Li ; Sharp Labs. of America, Camas, WA, USA ; R. Chellappa ; Qinfen Zheng ; S. Z. Der

An approach to model-based dynamic object verification and identification using video is proposed. From image sequences containing the moving object, we compute its motion trajectory. Then we estimate its three-dimensional (3-D) pose at each time step. Pose estimation is formulated as a search problem, with the search space constrained by the motion trajectory information of the moving object and assumptions about the scene structure. A generalized Hausdorff (1962) metric, which is more robust to noise and allows a confidence interpretation, is suggested for the matching procedure used for pose estimation as well as the identification and verification problem. The pose evolution curves are used to assist in the acceptance or rejection of an object hypothesis. The models are acquired from real image sequences of the objects. Edge maps are extracted and used for matching. Results are presented for both infrared and optical sequences containing moving objects involved in complex motions

Published in:

IEEE Transactions on Image Processing  (Volume:10 ,  Issue: 6 )