By Topic

Speaker identification for security systems using reinforcement-trained pRAM neural network architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Clarkson, T.G. ; Dept. of Electr. Eng., King''s Coll., London, UK ; Christodoulou, C.C. ; Yelin Guan ; Gorse, D.
more authors

Speaker identification may be employed as part of a security system requiring user authentication. In this case, the claimed identity of the user is known from a magnetic card and PIN number, for example, and an utterance is requested to confirm the identity of the user. A fast response is necessary in the confirmation phase and a fast registration process for new users is desirable. The time encoded signal processing and recognition (TESPAR) digital language is used to preprocess the speech signal. A speaker cannot be identified directly from the single TESPAR vector since there is a highly nonlinear relationship between the vector's components such that vectors are not linearly separable. Therefore the vector and its characteristics suggest that classification using a neural network will provide an effective solution. Good classification performance has been achieved using a probabilistic RAM (pRAM) neuron. Four probabilistic pRAM neural network architectures are presented. A performance of approximately 97% correct classifications has been obtained, which is similar to results obtained elsewhere (M. Sharma and R.J. Mammone, 1996), and slightly better than a MLP network. No speech recognition stage was used in obtaining these results, so the performance relates only to identifying a speaker's voice and is therefore independent of the spoken phrase. This has been achieved in a hardware-realizable system which may be incorporated into a smart-card or similar application

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:31 ,  Issue: 1 )