By Topic

Statistics of monopulse measurements of Rayleigh targets in the presence of specular and diffuse multipath

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Blair, W.D. ; Georgia Tech. Res. Inst., Georgia Inst. of Technol., Atlanta, GA, USA ; Brandt-Pearce, M.

In tracking of low-elevation targets with a monopulse radar, the presence of reflections from the sea surface causes severe errors in the direction-of-arrival (DOA) measurements of the target. Since the target echoes that are received directly and via the sea surface are unresolved in time and frequency, tracking targets in the presence of sea-surface induced multipath is a special case of tracking unresolved targets. The sea-surface reflection is modeled by a specular (coherent) component and a diffuse (noncoherent) component. The probability density function (pdf) of the measured amplitude of the sum signal and the amplitude-conditioned pdf of the in-phase and quadrature monopulse ratios are given for low-elevation, Rayleigh targets in the presence of sea-surface induced multipath. The means and variances of the monopulse ratios are used to illustrate the effects of diffuse multipath for a notional S-band radar

Published in:

Radar Conference, 2001. Proceedings of the 2001 IEEE

Date of Conference: