By Topic

A Bayesian method for fitting parametric and nonparametric models to noisy data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Werman, M. ; Inst. of Comput. Sci., Hebrew Univ., Jerusalem, Israel ; Keren, D.

We present a simple paradigm for fitting models, parametric and nonparametric, to noisy data, which resolves some of the problems associated with classical MSE algorithms. This is done by considering each point on the model as a possible source for each data point. The paradigm can be used to solve problems which are ill-posed in the classical MSE approach, such as fitting a segment (as opposed to a line). It is shown to be nonbiased and to achieve excellent results for general curves, even in the presence of strong discontinuities. Results are shown for a number of fitting problems, including lines, circles, elliptic arcs, segments, rectangles, and general curves, contaminated by Gaussian and uniform noise

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:23 ,  Issue: 5 )