By Topic

Analysis of BAW responses in ZnO multi-layer structures using transmission line method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Wittstruck, R.H. ; Sch. of Eng., Rutgers Univ., Piscataway, NJ, USA ; Emanetoglu, N.W. ; Muthukumar, S. ; Liang, S.
more authors

With the advent of epitaxial semiconductor growth technology, piezoelectric multilayer materials became available for broad application. Piezoelectric ZnO has large electromechanical coupling coefficients making it a promising candidate for multilayer thin film resonant filter devices. A family of methodologies has been developed to explain the analogous behavior of such multi-layer structures in terms of solutions to the acoustic wave differential equation. In the work encompassed by this paper, the model using transmission line representations to simulate the resonant behaviors in BAW devices is demonstrated. The model shows the electrical admittance response as a function of frequency

Published in:

Ultrasonics Symposium, 2000 IEEE  (Volume:1 )

Date of Conference:

Oct 2000