By Topic

A battery management system for stand-alone photovoltaic energy systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. Duryea ; Western Power Corp., Jandakot, WA., USA ; S. Islam ; W. Lawrance

It is estimated that about 80% of all photovoltaic (PV) modules are used in stand-alone applications. Continuous power is obtained from PV systems by using a storage buffer, typically in the form of a lead acid battery. Batteries used in PV applications have different performance characteristics compared with batteries used in more traditional applications. In PV applications, lead acid batteries do not reach the cycle of lead acid batteries used in other applications such as uninterruptible power supplies or electric vehicles. The shortened battery life contributes significantly to the costs of a PV system. In some PV systems the battery accounts for more than 40% of the life cycle costs. An increase in the lifetime of the battery will result in improved reliability of the system and a significant reduction in operating costs. The life of a lead acid battery can be extended by avoiding critical operating conditions such as overcharge and deep discharge. This paper presents a battery management system for such applications

Published in:

IEEE Industry Applications Magazine  (Volume:7 ,  Issue: 3 )