By Topic

Adaptive bias simulated evolution algorithm for placement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Youssef, H. ; Dept. of Comput. Eng., King Fahd Univ. of Pet. & Miner., Dhahran, Saudi Arabia ; Sait, S.M. ; Ali, H.

Simulated Evolution (SE) is a general meta-heuristic for combinatorial optimization problems. A new solution is evolved from current solution by relocating some of the solution elements. Elements with lower goodnesses have higher probabilities of getting selected for perturbation. Because it is not possible to accurately estimate the goodness of individual elements, SE resorts to a Selection Bias parameter. This parameter has major impact on the algorithm run-time and the quality of the solution subspace searched. In this work, we propose an adaptive bias scheme which adjusts automatically to the quality of solution and makes the algorithm independent of the problem class or instance, as well as any user defined value. Experimental results on benchmark tests show major speedup while maintaining similar solution quality

Published in:

Circuits and Systems, 2001. ISCAS 2001. The 2001 IEEE International Symposium on  (Volume:5 )

Date of Conference: