We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Development of sector scanning ultrasonic backscatter microscope

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chen, W.H. ; Dept. of Bioeng., Pennsylvania State Univ., University Park, PA, USA ; Gottlieb, E.J. ; Cannata, J.M. ; Chen, Y.F.
more authors

The Ultrasound Backscatter Microscope (UBM) is a noninvasive high frequency imaging tool used frequently for imaging the eye, skin and blood vessels. Currently, most UBM systems employ a linear motor control to obtain a transverse scan. This paper reports the implementation of a UBM that performs sector scan with a servo-controlled motor to manipulate a single element transducer. The advantage of applying a sector scan versus transverse linear scan is that the transducer needs to travel less distance to acquire an image of the same area. The transducer sector movement is achieved by a brief sweep that needs only a small open area for scanning. The servomotor's sweep angle has a small are of 5 degrees and provides enough width for an image. Because of the small angle sweeping, the image can be displayed in a linear format as the image in transverse scan without further calculation. The UBM system can be operated within the 50-100 MHz frequency range. Images have been acquired with this approach on excised human eye specimen. The quality of the image compares favorably with that obtained with the conventional UBM. The results indicate that the sector scan is an alternative method for UBM scanning. Future work includes the development of a hand held probe that houses a small transducer and servomotor capable of sector scanning

Published in:

Ultrasonics Symposium, 2000 IEEE  (Volume:2 )

Date of Conference:

Oct 2000