Cart (Loading....) | Create Account
Close category search window

A new computational approach for cortical imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ollikainen, J.O. ; Dept. of Appl. Phys., Kuopio Univ., Finland ; Vaukhonen, M. ; Karjalainen, P.A. ; Kaipio, J.P.

Estimation of current or potential distribution on the cortex is used to obtain information about neural sources from the scalp recorded electroencephalogram. If the active sources in the brain are superficial, the estimated field distribution on the cortex also yields information about the active source configuration. In these cases, these methods can be used as source localization methods. In this study, we concentrate on finite-element-based cortex potential estimation. Usually these methods require surface interpolation of the recorded voltages at the electrodes onto the entire scalp surface. We propose a new computational approach which does not require the use of surface interpolation but does it implicitly and uses only the recorded data at the electrodes. We refer to this method as the systematic approach (SA). We compare the SA with the surface interpolation approach (IA) and show that the SA is able to produce somewhat better accuracy than the IA. However, the main asset is that the sensitivity of the cortical potential maps to the regularization parameter is significantly lower than with the IA.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:20 ,  Issue: 4 )

Date of Publication:

April 2001

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.