Cart (Loading....) | Create Account
Close category search window
 

Computerized radiographic mass detection. I. Lesion site selection by morphological enhancement and contextual segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Li, H. ; Dept. of Electr. Eng., Maryland Univ., College Park, MD, USA ; Yue Wang ; Liu, K.J.R. ; Lo, S.-C.B.
more authors

This paper presents a statistical model supported approach for enhanced segmentation and extraction of suspicious mass areas from mammographic images. With an appropriate statistical description of various discriminate characteristics of both true and false candidates from the localized areas, an improved mass detection may be achieved in computer-assisted diagnosis (CAD). In this study, one type of morphological operation is derived to enhance disease patterns of suspected masses by cleaning up unrelated background clutters, and a model-based image segmentation is performed to localize the suspected mass areas using a stochastic relaxation labeling scheme. We discuss the importance of model selection when a finite generalized Gaussian mixture is employed, and use the information theoretic criteria to determine the optimal model structure and parameters. Examples are presented to show the effectiveness of the proposed methods on mass lesion enhancement and segmentation when applied to mammographical images. Experimental results demonstrate that the proposed method achieves a very satisfactory performance as a preprocessing procedure for mass detection in CAD.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:20 ,  Issue: 4 )

Date of Publication:

April 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.