By Topic

A novel single-phase self-regulated self-excited induction generator using a three-phase machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
T. F. Chan ; Dept. of Electr. Eng., Hong Kong Polytech., Kowloon, China ; Loi Lei Lai

This paper presents a steady-state analysis of a novel single-phase self-regulated self-excited induction generator which employs a three-phase machine. Performance equations are derived using the method of symmetrical components, while the pattern search method of Hooke and Jeeves is used for the determination of the machine variables. The advantages of the generator include simple circuit configuration, small voltage regulation, good phase balance, and large power output. With an appropriate choice of the series and shunt capacitances, a nearly balanced operating condition can be obtained for a certain load. The theoretical analysis is validated by experiments performed on a small induction machine

Published in:

IEEE Transactions on Energy Conversion  (Volume:16 ,  Issue: 2 )