Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Multiobjective optimal power plant operation through coordinate control with pressure set point scheduling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Garduno-Ramirez, R. ; Dept. of Electr. Eng., Pennsylvania State Univ., University Park, PA, USA ; Lee, K.Y.

Coordinated control schemes, at fossil fuel power plants, drive units as a whole through a variable pressure operating policy. Ordinarily, the pressure control loop set-point is obtained from the unit load demand through a fixed nonlinear mapping that does not allow for process optimization under operating conditions different from the originals. This paper presents a procedure to optimally design the power-pressure mapping by defining and solving a multiobjective optimization problem. Both procedure and mapping are realized as a supervisory set-point scheduler. The optimization problem is solved with the nonlinear goal programming method, which provides a single solution from the set of all multiobjective optimal solutions based on the assignment of relative preference values to the objective functions. This approach provides a way to specify the operating policy to accommodate a great diversity of operating scenarios. The procedure is presented through a case study, and its feasibility is demonstrated via simulation experiments

Published in:

Energy Conversion, IEEE Transactions on  (Volume:16 ,  Issue: 2 )