Cart (Loading....) | Create Account
Close category search window
 

Multigradient: a new neural network learning algorithm for pattern classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jinwook Go ; Dept. of Electr. & Electron. Eng., Yonsei Univ., Seoul, South Korea ; Gunhee Han ; Hagbae Kim ; Chulhee Lee

The authors propose a new learning algorithm for multilayer feedforward neural networks, which converges faster and achieves a better classification accuracy than the conventional backpropagation learning algorithm for pattern classification. In the conventional backpropagation learning algorithm, weights are adjusted to reduce the error or cost function that reflects the differences between the computed and the desired outputs. In the proposed learning algorithm, the authors view each term of the output layer as a function of weights and adjust the weights directly so that the output neurons produce the desired outputs. Experiments with remotely sensed data show the proposed algorithm consistently performs better than the conventional backpropagation learning algorithm in terms of classification accuracy and convergence speed

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:39 ,  Issue: 5 )

Date of Publication:

May 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.