By Topic

Bifurcation analysis in hybrid nonlinear dynamical systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

In this paper, we investigate the bifurcation phenomena in the nonlinear dynamical system switched by a threshold of the state or a periodic interrupt. First, we propose a method to trace the bifurcation sets for above system. We derive the composite discrete mapping as Poincare mapping. As a result, it is possible to obtain the local bifurcation values in the parameter plane. We also propose an efficient analyzing method for border-collision bifurcations. As an illustrated example, we investigate the behavior of the Rayleigh-type oscillator switched by a threshold of the state or a periodic interrupt. In this system, we can find many subharmonic bifurcation sets including global bifurcations and border collision. Some theoretical results are verified by laboratory experiments

Published in:

Circuits and Systems, 2001. ISCAS 2001. The 2001 IEEE International Symposium on  (Volume:3 )

Date of Conference:

6-9 May 2001