Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Reconfigurable VLSI architectures for evolvable hardware: from experimental field programmable transistor arrays to evolution-oriented chips

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Stoica, A. ; Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA ; Zebulum, R. ; Keymeulen, D. ; Tawel, R.
more authors

Evolvable hardware (EHW) addresses on-chip adaptation and self-configuration through evolutionary algorithms. Current programmable devices, in particular the analog ones, lack evolution-oriented characteristics. This paper proposes an evolution-oriented field programmable transistor array (FPTA), reconfigurable at transistor level. The FPTA allows evolutionary experiments with reconfiguration at various levels of granularity. Experiments in SPICE simulations and directly on a reconfigurable FPTA chip demonstrate how the evolutionary approach can be used to automatically synthesize a variety of analog and digital circuits.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:9 ,  Issue: 1 )