Cart (Loading....) | Create Account
Close category search window
 

Analysis of the rutile-ring method of frequency-temperature compensating a high-Q whispering gallery sapphire resonator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Tobar, M.E. ; Dept. of Phys., Western Australia Univ., Nedlands, WA, Australia ; Hartnett, J.G. ; Duchiron, G. ; Cros, D.
more authors

The rutile-ring method of dielectrically frequency-temperature compensating a high-Q whispering gallery (WG) sapphire resonator is presented. Two and three-dimensional finite element (FE) analysis has been implemented to design and analyze the performance of such resonators, with excellent agreement between theory and experiment. A high-Q factor of 30 million at 13 GHz, and compensation temperature of 56 K was obtained. It is shown the frequency-temperature compensation can occur either because the rutile adds a small perturbation to the sapphire resonator or because of a mode interaction with a resonant mode in the rutile. The characteristics of both of these methods are described, and it is shown that for high frequency stability, it is best to compensate perturbatively.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:48 ,  Issue: 3 )

Date of Publication:

May 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.