By Topic

Real-time transport of MPEG video with a statistically guaranteed loss ratio in ATM networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Seok-Kyu Kweon ; Cisco Syst., San Jose, CA, USA ; Shin, K.G.

Unlike deterministic real-time communication in which excessive resources may be required for “absolute” performance guarantees, statistical real-time communication seeks to achieve both probabilistic performance guarantees and efficient resource sharing. This paper presents a framework for statistical real-time communication in ATM networks, providing delay-guaranteed transport of MPEG-coded video traffic with a statistically-guaranteed cell-loss ratio. Delay-guaranteed communication is achieved with a modified version of Traffic-Controlled Rate-Monotonic Priority Scheduling (TCRM). A set of statistical real-time channels that share similar traffic characteristics are multiplexed into a common macrochannel. Those statistical real-time channels which are multiplexed together share the resources of a macrochannel, and individual statistical real-time channels are given timeliness and probabilistic cell-loss guarantees. A macrochannel is serviced by the modified TCRM which improves link utilization and makes channel management simpler. Based on the analysis of an M/D/1/N queueing system, we propose a procedure for determining the transmission capacity of a macrochannel necessary to statistically guarantee a cell-loss ratio bound. Our extensive trace-driven simulation has shown the superiority of the proposed framework to the other approaches. The overall cell-loss ratios for multihop statistical real-time channels are shown to be smaller than the predetermined bounds, thus verifying our analytical results

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:12 ,  Issue: 4 )