Cart (Loading....) | Create Account
Close category search window

Pattern-dependent noise prediction in signal-dependent noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jaekyun Moon ; Commun. & Data Storage Lab., Minnesota Univ., Minneapolis, MN, USA ; Jongseung Park

Maximum and near-maximum likelihood sequence detectors in signal-dependent noise are discussed. It is shown that the linear prediction viewpoint allows a very simple derivation of the branch metric expression that has previously been shown as optimum for signal-dependent Markov noise. The resulting detector architecture is viewed as a noise predictive maximum likelihood detector that operates on an expanded trellis and relies on computation of branch-specific, pattern-dependent noise predictor taps and predictor error variances. Comparison is made on the performance of various low-complexity structures using the positional-jitter/width-variation model for transition noise. It is shown that when medium noise dominates, a reasonably low complexity detector that incorporates pattern-dependent noise prediction achieves a significant signal-to-noise ratio gain relative to the extended class 4 partial response maximum likelihood detector. Soft-output detectors as well as the use of soft decision feedback are discussed in the context of signal-dependent noise

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:19 ,  Issue: 4 )

Date of Publication:

Apr 2001

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.