By Topic

Fault current tests of a 5-m HTS cable

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Lue, J.W. ; Oak Ridge Nat. Lab., TN, USA ; Barber, G.C. ; Demko, J.A. ; Gouge, M.J.
more authors

The first industrial demonstration of a three-phase, HTS power transmission cable at the Southwire manufacturing complex is in progress. One crucial issue during operation of the 30-m HTS cables is whether they can survive the fault current (which can be over an order of magnitude higher than the operating current) in the event of a short circuit fault and how HTS cables and the cryogenic system would respond. Simulated fault-current tests were performed at ORNL on a 5-m cable. This single-phase cable was constructed in the same way as the 30-m cables and is also rated for 1250 A at 7.2 kV AC line-to-ground voltage. Tests were performed with fault-current pulses of up to 15 kA (for 0.5 s) with pulse lengths of up to 5 s (at 6.8 kA). Although a large voltage drop was produced across the HTS cable during the fault-current pulse, no significant changes in the coolant temperature, pressure, or joint resistance were observed. The cable survived all 15 simulated fault-current shots without any degradation in its V-I characteristics

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:11 ,  Issue: 1 )